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COMMENT 

An sl(4, R) Lie algebraic approach to the Bargmann functions 
and its application to the second Poschl-Teller equation 

C Quesnet 
Physique Nucliaire Thiorique et Physique Mathhat ique ,  CP229, Universit6 Libre de 
Bruxelles, Bd du Triomphe, B1050 Bruxelles, Belgium 

Received 20 December 1988 

Abstract. The sI(4, W )  Lie algebraic treatment of the Wigner SU(2) matrices is extended 
by analytic continuation to the Bargmann SU(1, 1) matrices corresponding to the positive 
discrete series irreducible representations. It is then used to obtain an sl(4, W )  dynamical 
potential algebra for the negative-energy solutions of the second Poschl-Teller equation. 

In a recent paper (Quesne 1988), it was shown that the sl(4, W )  Lie algebra has a useful 
application to the first Poschl-Teller equation (Poschl and Teller 1933). Its generators 
can indeed connect together both solutions of the latter corresponding to the same 
potential strength but to different energies, and solutions with the same energy but 
different quantised potential strengths: sl(4, R) is a so-called dynamical potential 
algebra for the first family of Poschl-Teller potentials. 

Whether sl(4, R) can play the same role for other exactly solvable one-dimensional 
potentials is an interesting question, whereon we will comment in the present paper. 

In the study of the first Poschl-Teller equation, the physically relevant sl(4, R) 
subalgebra was the maximal compact one, so(4). Due to the discrete nature of the 
spectrum, the so(4) generators indeed connect together all the solutions with the same 
energy, but different potential strengths, and is therefore a potential algebra for the 
first family of Poschl-Teller potentials (Barut et al 1987a). Hence the known transfor- 
mation properties of the Wigner SU(2) matrices (Wigner 1959) under so(4) and sl(4, W )  
could be used to obtain those of the Poschl-Teller equation solutions, to which they 
are related. 

Such simplifications do not occur for other one-dimensional potentials, whose 
spectrum contains a continuum of positive energy levels in addition to a finite number 
of negative eigenvalues. The role of potential algebra is then played by s0(2,2) instead 
of so(4) (Frank and Wolf 1985, Barut et al 1987b), and the solutions of the equation 
are related to the Bargmann SU(1, 1) matrices (Bargmann 1947) instead of the Wigner 
SU(2) matrices. To the author’s knowledge, the behaviour of Bargmann functions 
under sl(4, R) 3 s0(2,2) has not been studied so far. 

In this comment, we shall fill in this gap for those Bargmann functions corresponding 
to the SU( 1, 1) positive discrete series irreducible representations (irreps), and we shall 
then apply the results to the negative-energy solutions of the second Poschl-Teller 
equation (Poschl and Teller 1933). Our procedure is based on the known properties 
of the Wigner SU(2) matrices under analytic continuation in the plane of complex 
angular momentum (Holman and Biedenharn 1966, Ui 1968, 1970). 

t Directeur de recherches FNRS. 
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Let us first briefly review the behaviour of the (complex conjugate) Wigner SU(2) 
matrices 

~ ' n s  m(a, P, Y ) = ~ x P ( ~ " ~ ) c  m ( P )  e x ~ ( i m ~ )  (1) 

under sI(4, R) 3 so(4) (Quesne 1988). Here a, p, y ( O S  cy, y < 2 ~ ,  O S  p S T )  represent 
Euler angles, j runs over all integers and half-integers, and m' and m over -j, 
- j+  1, .  . . , j . With respect to the so(4) = su(2)Osu(2) algebra, generated by two com- 
muting sets of arigular momentum operators? J o ,  J+,  J-, and Io ,  I+,  I - ,  the (2j+ I)* 
functions corresponding to a given j value, form a basis of an irrep labelled by 
[NO] = ( j ,  j ) ,  where N = 2j. The Casimir operators 5' and Z2 of both su(2) subalgebras 
coincide, and their common eigenvalues are equal to j ( ] + I ) .  The action of the 
operators J o ,  J,, and Io ,  I ,  on the complex conjugate Wigner functions is that of 
standard angular momentum operators on states Ijm') and Ijm) respectively. 

By adding to the operators Jo ,  J,, I o ,  and I,, the nine components U,,, U, T = +1, 
0, -1, of an irreducible tensor of rank (1, 1) with respect to su(2)Osu(2), one obtains 
the generators of an sl(4,R) algebra. With respect to the latter, the set of complex 
conjugate Wigner functions separates into two subsets, corresponding to all integral 
or half-integral values of j ,  respectively. Both carry an sl(4, R) unitary irrep of the 
ladder series %'add(jo,jO; v), characterised by the real parameter 7 appearing in the 
definition of U,,, and by the minimum] valuejo, equal to 0 or 4, depending on whether 
j is integral or half-integral. For such irreps, all three sl(4, R) independent Casimir 
operators assume unique numerical (7-dependent) values. The action of U,, on the 
complex conjugate Wigner functions results from a straightforward application of the 
Wigner-Eckart theorem with respect to su(2)O su(2), and is given by 

u,,D',* m ( a ,  P, Y )  = E  aJ , J ( j m ' ,  lUIj'm'+a)(jm, 17 . I j 'm+T)~~*+u ,m+~(a ,  P, Y )  (2) 

where (jm', 1 ~ 1  j 'm'+ U) denotes an SU(2) Wigner coefficient, the summation runs over 
j ' = j  - 1, j ,  j +  1, and 

J 

(3) - 1 a]-,,] - -g-a7. 1 
aj+,,j = i ( j  + 1) '1, J = -5 7 

Let us next consider the (complex conjugate) Bargmann SU(1, l )  matrices corre- 
sponding to the positive discrete series irreps D l ,  k = 5 ,  1, t ,  2,.  . . , 

V k m * m ( a ,  P,  Y )  =exp(im'a)vk m ( P )  exp(im7.I (4) 

where 

( m ' -  k ) ! ( m ' +  k - 1) ! 
(sinh +p)"-"(cosh $3)-"-" 

( 5 )  if m'* m 
( m  - k ) ! ( m +  k -  l)!  
1 - m - k ;  m'- m +  1; -sinh'$) 

if m' < m. 

Here the variables a, p, y vary in the intervals 0 s a, y < 2 ~ ,  and 0 s p < m, while m' 
and m run over k, k +  1, .  . . . 

The Bargmann functions V",:( a, P, y)  can be obtained by an analytic continuation 
of D C s m ( a ,  ip, y)  from positive to negative real values of j ,  and the substitution of k 

T The sl(4, W) generators used in the present comment differ from the generators J,, J,, K O ,  K , ,  T,,, of 
Quesne (1988) by the following algebra automorphism: J,, = J o ,  J, = J,, I ,  = - K O ,  I ,  = - K ,  , and U,, = 

(-l)'+'Tw,-7. 
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for -j (Holman and Biedenharn 1966). In doing so, the functions D;,,,,(a, ip, y)  and 
V:,,(a, p, y)  are considered to be defined for all integral or half-integral values of 
m' and m, but of course they are found to vanish identically for 1m'/, Im/ >j ,  and m', 
m < k, respectively. 

We remark here that the same procedure applied to D::(a, ip, y)  does not lead to 
a positive discrete series irrep of SU( 1, l ) ,  but to the identity representation, which is 
its only finite-dimensional unitary irrep. Both the identity representation and the 
representation V:: are not square integrable, as opposed to the representations VZm 
with k 3 1, which satisfy the orthogonality relation 

jo2n d a  jo2T d r  d p  sinh PVL'L(a, P, Y )  Vk,pm(a, P, Y )  

(6) 

When replacing p by ip in the so(4) and sl(4, R) generators, we obtain operators 
with the same commutation relations, but different Hermiticity properties. By changing 
the phase of the operators, we can then adjust such properties so as to conform to 
standard rules. 

Denoting by primed operators the sl(4, R) generators wherein the substitution ,B -+ ip 
has been carried out, let us set 

BO = Jh  9, = -iJ: 9 0 =  I; 9* = -iIL. (7) 

[Bo , &til = *B* (8) 

From the su(2) commutation relations, we obtain 

[B+ 3 6-1 = -220 

and similar relations for 9, and 9,. On the other hand, from the explicit expressions 
of Jo,  J,, Io,  I ,  (Quesne 1988), we get 

Bo = -id, 

9, = -ia, 

B= = e""(-i cothp a, 7 ap + i cosechp d y )  

9, = e*'?( -i cosechp a, f. ap + i cothp a?). (9) 

From (9 ) ,  it follows that 

(BO)+ =Bo (&ti)+ = 27 (10) 

and similar relations for 9, and 9,, with respect to the measure sinhp d a  d p  dy, used 
in defining the orthogonality properties (6) of Bargmann functions. Hence, Bo, Bi, 
9, and 9, generate an s0(2,2) = su(1, l ) O s u (  1, 1) algebra. The Casimir operators 9' 
and Y2 of both su(1 , l )  subalgebras again coincide and are given by 

f 2 =  -B+B-+B;-Bo=Y2= -9,4-+9;-4, 

= a& + cothp a, + cosech'p (3:" - 2 coshp a t y  + a;?). (11) 

With respect to su(1, l ) O s u ( l ,  l ) ,  the Bargmann functions (4) transform under 
DlOD:,  and they satisfy the relations 

2 k' 9 V m ' m ( a ,  P ,  ~ ) = k ( k - l ) v k , * . m ( a ,  P, Y) 
BovL*,m(a, P ,  Y )  = m'V$m(a, P, Y )  

$+V2sm(a, P, ~ ) = [ ( ~ ' ~ k * l ) ( " * k ) ~ " ~ ~ Z * l . m ( a ,  P, Y )  

(12) 
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as well as similar equations for 9, and 9, with m' replaced by m. All such relations 
can be directly obtained from the known properties of the Wigner matrices by the 
above-mentioned analytic continuation. 

Since the substitution p + ip transforms the Wigner SU(2) matrices into the finite- 
dimensional non-unitary irrep matrices of SU(1 , l )  (Holman and Biedenharn 1966, Ui 
1968, 1970), it is obvious that such a replacement in the su(2)Osu(2) rank ( 1 , l )  
irreducible tensor U,, should lead to an su(1, l ) O s u ( l ,  1) irreducible tensor %,,, 
transforming under the non-unitary irrep (1, 1). By definition (Ui 1968), this irreducible 
tensor must satisfy the commutation relations 

[Bo 9 %U, 1 = (+%U, U*, % U T I  = F[(1 ~ u ) ( 2 * d 1 1 ' 2 ~ u * l , 7  (13) 

and similar relations for 9o and 4, with the role of cr and 7 interchanged. From (7) 
and the defining relations of the su(2)Osu(2) irreducible tensor U,,, it results that 

U b, (14) % =io+,  
U7 

satisfies (13) and its counterpart for 9, and 9*. 

% + l , i l = ~ e * l ( a + y ) [ ~ d ,  - i s i n h p  d p F a , - ( i - $ ~ ) ( l + c o s h p ) ]  

%+l,Tl=ie*i(a-y)[*d, - i s i n h p  a , F a , + ( i - ~ v ) ( l - c o s h P ) ]  

%,,,, = (1/d2) e*iDl[Fcosechp a, + i coshp a, i coth p a, + (i - : T )  sinhp] 

= (1/d2) eiiY[+cothp d, - i  coshp ap *cosech p a, - ( i -$T) sinh p] 

From the explicit expressions of U,, (Quesne 1988), we obtain 

%lo,o = i sinhp a, + (i - i v )  cosh p (15) 

where 7 is a real parameter. We note that 

(16) - JQ 
('U,T) - -U,-, 

with respect to the measure sinhp d a  d p  dy. 
The full set of sl(4, R) commutation relations, adapted to the chain sl(4, R) 3 s0(2,2) 

is given by (8), (13), and their counterparts for 9, and 9*, as well as by the following 
relation 

[ %,,, %,,,.I = (-1),8+a( 1 U, 1 a') 1 U + U ' ) ~ , + , '  

+ ( -l)u8u,-u,a( 1 7, 1 7'1 1 7 + 7')9T+,. (17) 

resulting from (7) ,  (14), and the corresponding relation for [ U,,, U,,,,]. Here we have 
taken into account that the Wigner coefficients of the SU( 1, 1) finite-dimensional 
non-unitary irreps are identical with those of SU(2) (Holman and Biedenharn 1966, 
Ui 1968, 1970), and that the tensor components of J and f are .To, J,l = F J J a ,  and 

on the complex conjugate Bargmann functions results from the 
$*, =$+/a, respectively. 

The action of 
Wigner-Eckart theorem with respect to su(1, l ) O s u ( l ,  l ) ,  and is given by 

'UTV$m(a, p, 
= E  bk9 ,k (km' ,  1 c r l k ' m ' + ~ ) ~ ( k m ,  1 7 1 k ' m + 7 ) ~ V ~ : + , , ~ + ? . ( a , p ,  7 ) .  

k' 

(18) 
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Here the summation runs over k' = k - 1, k, k + 1, bk8,k is some coefficient, and ( k  m', 
1 ulk' m'+u) ,  denotes an SU(1, l )  Wigner coefficient coupling a unitary irrep 0: 
with a non-unitary irrep with K = 1 to get another unitary irrep 0:. (Ui 1968, 1970). 
The coefficient bk,,k can be easily found without calculation by an analytic continuation 
of (2). Ui (1968) has indeed shown that, apart from a phase arising from the two- 
valuedness of the square root, the SU( 1 , l )  Wigner coefficient ( k  m', 1 ulk' m'+ a)M 
can be obtained from ( j  m', 1 (+I j '  m'+ U )  by substituting k and k' for - j  and -j ' , 
respectively. From the tabulated values of both Wigner coefficients, we obtain the 
relation 
[ ( ( j m ,  1 Ulj '  m + U ) ) 2 ] k = - j , k , = - , ' = ( - l ) k - k ' + " ( ( k , ,  1 c+lk' m + U ) M ) 2 .  (19) 
Hence, direct comparison between equation (2), where U = T and m'= m = -j, and 
equation (18), where U = T and m'= m = k, leads to the relation 

,bk',k = (- 1) k'-k[ a j , , , ] k =  - j ,k '=  - j ' .  

bk-,,k=i(k-l)+:7) b k ,k -  --i 47) bk+],k= -ik+$T. (21) 

(20) 
When combined with (3), the latter gives the results 

We therefore conclude that under sl(4, R) the set of (complex conjugate) Bargmann 
functions corresponding to the positive discrete series irreps separates into two subsets, 
corresponding to all integral or all half-integral values of k, respectively. Since, in the 
analytic continuation, the numerical values of the three sl(4, R) independent Casimir 
operators remain unchanged, both subsets belong to the same sl(4,R) irreps of the 
ladder series, %'ladd(0, 0; 7)) and %)Iadd(;, i; T), as the corresponding subsets of Wigner 
functions. 

The decomposition of these sl(4, R) irreps into s0(2,2) irreps is, however, much 
more complicated than the corresponding decomposition into so(4) irreps. We indeed 
note that (18) is only valid for k > $ .  For k = 1 or 4, some of the Bargmann functions 
appearing on the right-hand side are not defined. However, by direct calculation, the 
following results can be proved: 

%-],-I v:3., P, Y) = $7) (22) 
(23) v1/2* 1,2,1,2(a, P, Y) = i C - i + h )  exp[-$(. + r)l coship. 

On the right-hand side of (22), we recognise the identity representation, and on that 
of (23) the component -i, -: of the two-dimensional non-unitary irrep with K = a .  
Hence the ladder series irreps of sl(4, R) contain not only the positive discrete series 
irreps of su( 1, l )Osu(  1, l), but also its finite-dimensional unitary and non-unitary 
irreps. This is not surprising since some of the sl(4, R) generators, namely the operators 

transform under a non-unitary irrep of su(1, l ) O s u ( l ,  1). The basis states of the 
non-unitary su( 1, l )Osu( l ,  1) irreps, contained in the sl(4, R) ladder series irreps, being 
unphysical, have no counterpart in the Hamiltonian spectra. Hence we shall not 
analyse the decomposition of the sl(4, R) ladder series irreps any further, and we shall 
instead proceed to apply our results to the second Poschl-Teller equation. 

This equation is (Poschl and Teller 1933) 

where a is some real parameter, the variable x runs over [0, +CO), K ,  A are two strength 
parameters, and n E N labels the eigenvalues E, and the wavefunctions +,,(x). Since 
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we are only interested in the negative-energy solutions of (24), we may assume A > K > 1 .  
It is convenient to replace K and A by m' and m, defined by 

K = m ' - m + $  A = m'+ m -f ( 2 5 )  

and to write the wavefunctions as +!'"'*"'(x). The condition A > K > 1 imposes the 
following restrictions on m' and m :  

m'> m + i >  1. ( 2 6 )  

Let us set 

x = P/2a P E [O,  +a) 

E, =2h2a2A, /M 

and 

(29) ( , m ', m ) (x)  = [ (2k-  1)a sinh p]"2q',"'"'(P) 

where k will be defined below in terms of m and n. Equation (24) is then transformed 
into the following equation 

[d&+coth P do - (m '2+ m2-2m'm cosh P )  cosech2 P + A ,  + b ] q ~ " " ' ( P )  = O .  (30) 

From (4), ( 1 1 )  and (12) ,  it results that (30) coincides with the differential equation 
satisfied by the P-dependent part, v k l m ( P ) ,  of the Bargmann S U ( 1 , l )  functions corre- 
sponding to positive discrete series irreps, provided that A, = -( k - : ) 2 ,  where k E { 1, 
3 ,  2, ;, . . .} and m'-  k, m - k E N .  From ( 2 5 )  and (26), these conditions imply that K 

and A must be half integral, and that 
3 

k = m - n  n E N .  (31) 

The eigenvalues can therefore be written in dimensionless units as 

where [ ( A  - ~ ) / 2 ]  denotes the largest integer contained in ( A  - ~ ) / 2 .  The corresponding 
normalised wavefunctions are given by (29), where 

(33)  ( m ', m 1 
n ( P I  = v k ' m ( P ) .  

By introducing an additional dependence on two auxiliary, angular variables a, 
y E [0,277), the wavefunctions (29) are transformed into the extended wavefunctions 

q, ',"', m (x, cy, y )  = ( 2 ~ ) ~ '  exp(im'cy)+~"~"'(x) exp(imy) 

=[(2k-l)a/4.rr2]1'2(sinh P)"'V$,(cy, P, y )  (34) 

expressed in terms of the Bargmann functions (4).  
Owing to ( 2 6 ) ,  there is no one-to-one correspondence between the functions 

uk,,,,,(p), m', m = k, k +  1 , .  . . , and the wavefunctions $i"2m)(x), nor between the 
functions Vsm(cy, P, y ) ,  m ' ,  m = k, k +  1 , .  . . , and the extended wavefunctions 
~.'"'~' '"(x, cy, y ) .  As a matter of fact, the functions vk,,,(P) with m > m'+i  correspond 
to some replicas +(,"xm)(x) of the true wavefunctions $L(nm,")(x), m > m ' + f ,  associated 
with the same potential of parameters 1 - K and A, since 

(35) * ',"'. m 1 ( x) = ( - 1 ) m '- m $ ',". m '1 ( x). 
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In addition, the functions u k m ( p )  correspond to some unphysical functions $Lm3'")(x), 
i.e. functions not associated with a potential of the family. 

It is now straightforward to obtain the sl(4, R) dynamical potential algebra of the 
Poschl-Teller potentials of the second kind. From (34), it follows that its generators, 
which we shall distinguish by a tilde, can be obtained from the corresponding ones 
for the Bargmann functions by a similarity transformation by (sinh / 3 ) ' 1 2 .  The results 
are 
B;o = -i d, 

$* = e"a[F(2a)-'dx - i  coth 2ax d, + i  cosech 2ax 3 ,  *$ coth 2ax] 
9, = -id, 

$* = e*',[ *(2a)-'d, - i cosech 2ax d, + i coth 2ax 8, 
=; e*"~+y'[-i(2a)-'sinh 2ax d , F d ,  F d , - i + a v  -$(2i- 7 )  cosh 2ax] 

4+,,,,, =fe*'(a-y)[-i(2a)-l sinh 2ax d, *do  Td,+i-$v -$(2i- 7 )  cosh 2ax] 

coth 2ax] 

(36) 

= (l/J2)e*'"[i(2a)-' cosh 2ax d, T cosech 2ax a, * coth 2ax d, -f i  cosech 2ax 
+$(2i - 7 )  sinh 2axl 

-$(2i - 7 )  sinh 2ax] 
Go,&' = (l /J2) e*',[ -i(2a)-' cosh 2ax d, F coth 2ax d, * cosech 2ax 3 ,  +$i cosech 2ax 

Go,, = i(2a)-' sinh 2ax d, +$(2i- 7 )  cosh 2ax. 
One should remark that they could also have been obtained by analytic continuation 
from the generators of the dynamical potential algebra of the first Poschl-Teller 
potential family. 

From (12), (18), (31) and (34), the action of the sl(4, R) generators on the extended 
wavefunctions is given by 
j0qLm , m ) ( ~ ,  a, y )  = m'qLm sm'(x, a,  y )  

$+qkm sm)(x, a, y )  = [ ( m ' -  m + n + l ) ( m ' +  m - n)~ ' /~*L"+'~~)(x,  a, y )  

$ o q ( m  , m )  (x, a, 7) = m q ?  ."(x, a, Y), 
(x, a, Y) = [(n + 1)(2m - n) I "29L+i  

n 
$+,p ( m ' , m  1 m m + l j  ,, (x, a, Y) 

(37) 

and 
4 q ( m ' , m )  

UT fl (x, a, 7) 
n + 7 + l  

= C d , , , (m-n ) (m-nm' ,  1 ulm-n'+.rm'+(+), 
f l ' = f l + T - l  

x ( m  - n m, 1 Tim - n'+ T m + ~T),+,q\ITjll'+~,~+~) (x, a, Y) 

[-i(m - n)+$7][(2m -2n - 1)/(2m -2n + I)]'/' 
where 

if n ' = n + T - l  

if n ' = n + T  (39) 
[ i (m-n -1)+$7][(2m-2n -1)/(2m-2n-3)]"* 

if n' = n + T+ 1. 
As already proved by other authors (Frank and Wolf 1985, Barut et a1 1987b), the 

generators of s0(2,2) connect together the eigenstates associated with the same eigen- 
value A,,, given by (32), but with different potentials corresponding to the sets of 
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quantised potential strengths ( m ‘ ,  m ) ,  (”*I,  m ) ,  and ( m ’ ,  m k l ) .  All such states 
belong to a single su(1, l ) O s u ( l ,  1) irrep 0lO0:. After substituting -id, and -id, 
for m’ and m respectively, the Poschl-Teller Hamiltonian H, as defined in (24), is 
essentially the su( 1, l ) O s u (  1, 1) Casimir operator, since 

p = y =  -M(2fjZaZ)-’H-i. (40) 

In addition, the generators aV7 of sl(4, R) can connect eigenstates associated with 
different eigenvalues. In particular, %oo generates transitions between eigenstates 
corresponding to the same potential and values of n differing by one unit. All the 
eigenstates of the family of Poschl-Teller potentials with half-integral values of K and 
A, such that K + A  is even (odd) and A - K is odd (even), belong to the carrier space 
of B’ladd(O, 0; 7)[9’ladd($, i; T ) ] .  However, such carrier spaces also contain extra copies 
of the potential family eigenstates, as well as some unphysical states. 

The second Poschl-Teller equation also has non-negative energy solutions, that 
have not been discussed in the present paper. The zero-energy solution can be expressed 
in terms of the Bargmann function V:E( a, p, y )  corresponding to the positive discrete 
series irrep DTI2, while the positive-energy ones are given in terms of the continuous 
principal series irreps of SU(1, l),  CO, and C;” (Barut et a1 1987b). In principle, they 
could be analysed along sl(4,R) lines as the discrete states. However, as far as the 
author knows, the SU( 1, 1) Wigner coefficients coupling a continous principal series 
irrep with a finite-dimensional non-unitary irrep have not been determined so far. 
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